
 1

Optimizing Your PyTorch Code:
Unlocking Performance and Efficiency

A Guide to Boosting Speed and Resource Usage

Hovhannes Tamoyan

DataLoader

2

Multi-process Data Loading

● DataLoader uses a single-process by default.

● The GIL prevents true fully parallelizing Python code across threads ->

blocking computation code with data loading.

● To perform multi-process data loading set the argument num_workers=R+.

More: https://pytorch.org/docs/stable/data.html

https://pytorch.org/docs/stable/data.html

DataLoader

3

Multi-process Data Loading

● After several iterations, the loader worker processes will consume the same amount of CPU
memory as the parent process for all Python objects in the parent process which are accessed
from the worker processes.

● This can be problematic if the Dataset contains a lot of data (e.g., you are loading a very large
list of filenames at Dataset construction time) and/or you are using a lot of workers (overall
memory usage is number of workers * size of parent process).

● The simplest workaround is to replace Python objects with non-refcounted representations
such as Pandas, Numpy or PyArrow objects.

More: https://github.com/pytorch/pytorch/issues/13246

https://github.com/pytorch/pytorch/issues/13246

DataLoader

4

Memory Pinning

● To speed up the host the Dataset transfer from CPU to GPU

enable pin_memory.

● This lets the DataLoader allocate the samples in page-locked/

pinned memory, which speeds-up the transfer to GPU.

● To put the fetched data tensors in pinned memory set

pinn_memory=True

More: https://pytorch.org/docs/stable/data.html

https://pytorch.org/docs/stable/data.html

DistributedDataParallel

5

DistributedDataParallel

● DistributedDataParallel uses multiprocessing where a process is created for each GPU

● DataParallel uses multithreading.

● During multiprocessing, each GPU has its dedicated process, this avoids the performance overhead caused by

GIL.

● Recommended to use DistributedDataParallel, instead of DataParallel to do multi-GPU training, even if there is

only a single node.

● Use torch.distributed.launch utility to launch your program utilizing DistributedDataParallel.

More: https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html

More: https://pytorch.org/docs/stable/distributed.html

https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/stable/distributed.html

Gradients

6

Inference Mode

● Inference code run under this mode gets better performance by disabling

view tracking and version counter bumps

● Make sure your operations will have no interactions with autograd

● Note that unlike some other mechanisms that locally enable or disable

grad, entering inference_mode also disables forward-mode AD.

More: https://pytorch.org/docs/stable/generated/torch.inference_mode.html

https://pytorch.org/docs/stable/generated/torch.inference_mode.html

Gradients

7

No grad Mode

with torch.no_grad():

 x = torch.randn(1)

 y = x + 1

y.requires_grad = True

z = y + 1

print(z.grad_fn)

> <AddBackward0 object at 0x7fe9c6eafdf0>

Inference Mode

with torch.inference_mode():

 x = torch.randn(1)

 y = x + 1

y.requires_grad = True

> RuntimeError: Setting requires_grad=True

on inference tensor outside InferenceMode is

not allowed.

Gradients

8

Set grad to None

● Pass an additional argument set_to_none=True when calling optimizer.zero_grad() to set the grade to None and
not 0.

● Leads to a lower memory footprint and modestly faster performance.

● Caveats apply:

○ When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s
will behave differently.

○ The operation followed by a backward pass, guarantees the .grads to be None for params that did not
receive a gradient.

○ torch.optim optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with
a gradient of 0 and in the other it skips the step altogether).

More: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html

https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html

Operator Fusing

9

Pointwise operations

● Pointwise operations are memory-bound, for each operation PyTorch

launches a separate kernel.

● Use the torch.jit to fuse pointwise operators into a single operator (kernel

call).

● Fused operator launches only one kernel for multiple fused pointwise ops.

More: https://pytorch.org/docs/stable/jit.html#

https://pytorch.org/docs/stable/jit.html#

Operator Fusing

10

Optimizers

● PyTorch has 3 major categories of oprimizers: for-loop, foreach (multi-tensor), and fused.

● Think of foreach implementations as fusing horizontally and fused implementations as

fusing vertically on top of that.

● fused > foreach > for-loop.

● supported optimizers: FuseAdam, FuseLAMBD, FusedNovoGrad, FusedSGD.

More: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html

Checkpoint intermediate buffers

11

Intermediate layer storing

● For the backward pass, store the inputs of a few layers and recompute

others during the backward pass.

● This reduces the memory requirements, and enables increasing the

batch size

More: https://pytorch.org/docs/stable/checkpoint.html

https://pytorch.org/docs/stable/checkpoint.html

Avoid CPU-GPU Synchronizations

12

Avoid operations that requires synchronization such as:

● print(cuda_tensor)

● cuda_tensor.item()

● cuda_tensor.cpu()

● python control flow which depends on the results of operations performed on cuda

tensors e.g. if (cuda_tensor ≠ 0).all()

More: https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-

cpu-gpu-synchronization

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization

Use Mixed Precision and AMP

13

Mixed Precision

● Some operations use the torch.float32 data type and other operations use

torch.float16.

● Some operations, such as linear layers and convolutions are much faster in float16.

● Other operations like reductions often require the dynamic range of float32.

● AMP tries to match each op to its appropriate data type.

More: https://pytorch.org/docs/stable/amp.html

https://pytorch.org/docs/stable/amp.html

bfloat16 Data Type

14

bfloat16

● Neural networks are more sensitive to
the size of the exponent than the size of
the mantissa.

● Provides identical behavior for
underflows, overflows, and NaNs.

● bfloat16 is a drop-in replacement for
float32 when training and running deep
neural networks.

More: https://cloud.google.com/tpu/docs/
bfloat16

https://cloud.google.com/tpu/docs/bfloat16
https://cloud.google.com/tpu/docs/bfloat16
https://cloud.google.com/tpu/docs/bfloat16

15

Profilers

A Guide to Boosting Speed and Resource Usage

Hovhannes Tamoyan

PyTorch Profiler

16

torch.profiler

● PyTorch Profiler is a tool that allows the collection of performance metrics

during training and inference.

● Profiler’s context manager API can be used to better understand what

model operators are the most expensive, examine their input shapes and

stack traces, study device kernel activity and visualize the execution trace.

More: https://pytorch.org/docs/stable/profiler.html

https://pytorch.org/docs/stable/profiler.html

Trace Viewers

17

Tools

● chrome://tracing

● https://www.speedscope.app/

● https://www.tensorflow.org/

tensorboard/

tensorboard_profiling_keras

https://www.speedscope.app/
https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras

18

Extras

A Guide to Boosting Speed and Resource Usage

Hovhannes Tamoyan

Debugging Parallel Ops

19

You can force synchronous computation by setting environment variable

CUDA_LAUNCH_BLOCKING=1.

Annotate Tensor Shapes

20

class NN:

embedding: "(V, E)" = torch.zeros(V, E)

assert(str(tuple(var.shape)) ==
NN.__annotations__["embedding"])

More: https://github.com/ofnote/tsalib

https://github.com/ofnote/tsalib

cuDNN Benchmark

21

A bool that, if True, causes cuDNN to enable the inbuilt auto-tuner to

find the best algorithm to use for your hardware:

torch.backends.cudnn.benchmark

22

Thank You

Hovhannes Tamoyan

