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Multi-process Data Loading 

● DataLoader uses a single-process by default. 

● The GIL prevents true fully parallelizing Python code across threads -> 

blocking computation code with data loading. 

● To perform multi-process data loading set the argument num_workers=R+. 

More: https://pytorch.org/docs/stable/data.html

https://pytorch.org/docs/stable/data.html
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Multi-process Data Loading 

● After several iterations, the loader worker processes will consume the same amount of CPU 
memory as the parent process for all Python objects in the parent process which are accessed 
from the worker processes. 

● This can be problematic if the Dataset contains a lot of data (e.g., you are loading a very large 
list of filenames at Dataset construction time) and/or you are using a lot of workers (overall 
memory usage is number of workers * size of parent process). 

● The simplest workaround is to replace Python objects with non-refcounted representations 
such as Pandas, Numpy or PyArrow objects. 

More: https://github.com/pytorch/pytorch/issues/13246

https://github.com/pytorch/pytorch/issues/13246
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Memory Pinning 

● To speed up the host the Dataset transfer from CPU to GPU 

enable pin_memory. 

● This lets the DataLoader allocate the samples in page-locked/

pinned memory, which speeds-up the transfer to GPU. 

● To put the fetched data tensors in pinned memory set 

pinn_memory=True 

More: https://pytorch.org/docs/stable/data.html

https://pytorch.org/docs/stable/data.html
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DistributedDataParallel 

● DistributedDataParallel uses multiprocessing where a process is created for each GPU 

● DataParallel uses multithreading. 

● During multiprocessing, each GPU has its dedicated process, this avoids the performance overhead caused by 

GIL. 

● Recommended to use DistributedDataParallel, instead of DataParallel to do multi-GPU training, even if there is 

only a single node. 

● Use torch.distributed.launch utility to launch your program utilizing DistributedDataParallel. 

More: https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html 

More: https://pytorch.org/docs/stable/distributed.html

https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/stable/distributed.html
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Inference Mode 

● Inference code run under this mode gets better performance by disabling 

view tracking and version counter bumps 

● Make sure your operations will have no interactions with autograd 

● Note that unlike some other mechanisms that locally enable or disable 

grad, entering inference_mode also disables forward-mode AD. 

More: https://pytorch.org/docs/stable/generated/torch.inference_mode.html

https://pytorch.org/docs/stable/generated/torch.inference_mode.html
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No grad Mode 

with torch.no_grad(): 

    x = torch.randn(1) 

    y = x + 1 

y.requires_grad = True 

z = y + 1 

print(z.grad_fn) 

> <AddBackward0 object at 0x7fe9c6eafdf0>

Inference Mode 

with torch.inference_mode(): 

    x = torch.randn(1) 

    y = x + 1 

y.requires_grad = True 

> RuntimeError: Setting requires_grad=True 

on inference tensor outside InferenceMode is 

not allowed.
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Set grad to None 

● Pass an additional argument set_to_none=True when calling optimizer.zero_grad() to set the grade to None and 
not 0. 

● Leads to a lower memory footprint and modestly faster performance. 

● Caveats apply: 

○ When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s 
will behave differently. 

○ The operation followed by a backward pass, guarantees the .grads to be None for params that did not 
receive a gradient. 

○ torch.optim optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with 
a gradient of 0 and in the other it skips the step altogether). 

More: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html

https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html
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Pointwise operations 

● Pointwise operations are memory-bound, for each operation PyTorch 

launches a separate kernel. 

● Use the torch.jit to fuse pointwise operators into a single operator (kernel 

call). 

● Fused operator launches only one kernel for multiple fused pointwise ops. 

More: https://pytorch.org/docs/stable/jit.html#

https://pytorch.org/docs/stable/jit.html#
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Optimizers 

● PyTorch has 3 major categories of oprimizers: for-loop, foreach (multi-tensor), and fused. 

● Think of foreach implementations as fusing horizontally and fused implementations as 

fusing vertically on top of that. 

● fused > foreach > for-loop.  

● supported optimizers: FuseAdam, FuseLAMBD, FusedNovoGrad, FusedSGD. 

More: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html
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Intermediate layer storing 

● For the backward pass, store the inputs of a few layers and recompute 

others during the backward pass. 

● This reduces the memory requirements, and enables increasing the 

batch size 

More: https://pytorch.org/docs/stable/checkpoint.html

https://pytorch.org/docs/stable/checkpoint.html
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Avoid operations that requires synchronization such as: 

● print(cuda_tensor) 

● cuda_tensor.item() 

● cuda_tensor.cpu() 

● python control flow which depends on the results of operations performed on cuda 

tensors e.g. if (cuda_tensor ≠ 0).all() 

More: https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-

cpu-gpu-synchronization

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization
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Mixed Precision 

● Some operations use the torch.float32 data type and other operations use 

torch.float16. 

● Some operations, such as linear layers and convolutions are much faster in float16. 

● Other operations like reductions often require the dynamic range of float32. 

● AMP tries to match each op to its appropriate data type. 

More: https://pytorch.org/docs/stable/amp.html

https://pytorch.org/docs/stable/amp.html
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bfloat16 

● Neural networks are more sensitive to 
the size of the exponent than the size of 
the mantissa. 

● Provides identical behavior for 
underflows, overflows, and NaNs. 

● bfloat16 is a drop-in replacement for 
float32 when training and running deep 
neural networks. 

More: https://cloud.google.com/tpu/docs/
bfloat16

https://cloud.google.com/tpu/docs/bfloat16
https://cloud.google.com/tpu/docs/bfloat16
https://cloud.google.com/tpu/docs/bfloat16
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torch.profiler 

● PyTorch Profiler is a tool that allows the collection of performance metrics 

during training and inference. 

● Profiler’s context manager API can be used to better understand what 

model operators are the most expensive, examine their input shapes and 

stack traces, study device kernel activity and visualize the execution trace. 

More: https://pytorch.org/docs/stable/profiler.html

https://pytorch.org/docs/stable/profiler.html
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Tools 

● chrome://tracing 

● https://www.speedscope.app/  

● https://www.tensorflow.org/

tensorboard/

tensorboard_profiling_keras 

https://www.speedscope.app/
https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras
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You can force synchronous computation by setting environment variable 

CUDA_LAUNCH_BLOCKING=1.
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class NN: 

embedding: "(V, E)" = torch.zeros(V, E) 

assert(str(tuple(var.shape)) == 
NN.__annotations__["embedding"]) 

More: https://github.com/ofnote/tsalib

https://github.com/ofnote/tsalib
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A bool that, if True, causes cuDNN to enable the inbuilt auto-tuner to 

find the best algorithm to use for your hardware: 

torch.backends.cudnn.benchmark
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