
Recurrent Neural
Networks

RNN
Motivation, Architecture, Problems and Modifications

AUA, DS330 Deep Learning 2021, Hovhannes Tamoyan

Motivation

We need to input a sequence (sentence, equation etc) of
tokens in our NN.

We need an NN that can process any length input.

Humans don’t start their thinking from scratch every second.
As you read this slide, you understand each word based on
your understanding of previous words. Your thoughts have

persistence.

The solution is in RNNs!

Definition

A Recurrent Neural Network (RNN) is a type of NN which
uses sequential data and for every state (t) it has two inputs:

the previous state’s output (yt-1) and the regular input (xt).

The drawback of vanilla RNNs

“the clouds are in the sky.”

“I grew up in France… I speak fluent French.”

The drawback of standart RNNs

Unfortunately, as the gap between the relevant information and the
point where it is needed grows, RNNs become unable to learn to

connect the information.

In theory, RNNs are absolutely capable of handling such “long-

term dependencies.”

Sadly, in practice, RNNs don’t seem to be able to learn them.

Vanishing gradients problem.

Thankfully, LSTMs don’t have this problem!

Long Short-Term Memory Networks (LSTM)

LSTMs are capable of learning long-term dependencies.

LSTMs are explicitly designed to avoid the long-term

dependency problem. Remembering information for long
periods of time is practically their default behavior, not

something they struggle to learn!

by Hochreiter & Schmidhuber (1997)

http://www.bioinf.jku.at/publications/older/2604.pdf

LSTM Architecture

In standard RNNs, the repeating module will have a very simple
structure, such as a single tanh layer.

LSTMs also have this chain like structure, but the repeating module
has a different structure. It has four layers, interacting in a very

special way.

The main idea behind LSTMs

The key to LSTMs is the cell state,
the horizontal line running through

the top of the diagram. It’s very easy
for information to just flow along it

unchanged.

The LSTM does have the ability to

remove or add information to the cell
state, carefully regulated by

structures called gates.

The main idea behind LSTMs contd.

Gates are a way to optionally let information
through. They are composed out of a sigmoid
neural net layer and a pointwise multiplication

operation.

The sigmoid layer outputs numbers between
zero and one, describing how much of each
component should be let through. A value of

zero means “let nothing through,” while a
value of one means “let everything through!”.

An LSTM has three of these gates, to protect

and control the cell state.

Some notations before we continue

ht - hidden state at time t

Ct - Cell state at time t

LSTM - Forget Gate

The first step in our LSTM is to
decide what information we’re going

to throw away from the cell state.
This decision is made by a sigmoid
layer called the “forget gate layer.”

LSTM - Input Gate

The next step is to decide what new
information we’re going to store in the

cell state.

This has two parts. First, a sigmoid layer

called the “input gate layer” decides
which values we’ll update. Next, a tanh
layer creates a vector of new candidate
values, C̃ t , that could be added to the

state.

In the next step, we’ll combine these two

to create an update to the state.

LSTM - Update Mechanism

It’s now time to update the old cell
state, Ct−1 , into the new cell state Ct.
The previous steps already decided

what to do, we just need to actually do
it.

We multiply the old state by ft ,
forgetting the things we decided to

forget earlier. Then we add it∗C̃ t. This
is the new candidate values, scaled by
how much we decided to update each

state value.

LSTM - Output Gate

Finally, we need to decide what we’re
going to output. This output will be

based on our cell state, but will be a
filtered version.

First, we run a sigmoid layer which
decides what parts of the cell state we’re

going to output. Then, we put the cell
state through tanh (to push the values to
be between −1 and 1) and multiply it by

the output of the sigmoid gate, so that
we only output the parts we decided to.

Gated Recurrent Unit (GRU)

A slightly modified variant of LSTM.

It combines the forget and input

gates into a single “update gate.” It
also merges the cell state and hidden

state, and makes some other
changes. The resulting model is

simpler than standard LSTM models,
and has been growing increasingly

popular.

by Cho, et al. (2014)

https://arxiv.org/pdf/1406.1078v3.pdf

LSTM vs GRU

Now we have seen the operation of both the layers to combat
the problem of vanishing gradient. So you might wonder

which one to use?

According to empirical evaluation, there is not a clear winner.

GRU uses less training parameter and therefore uses less
memory and executes faster than LSTM whereas LSTM is

more accurate on a larger dataset. One can choose LSTM if
you are dealing with large sequences and accuracy is
concerned, GRU is used when you have less memory

consumption and want faster results.

Thank You

