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Motivation

We need to input a sequence (sentence, equation etc) of 
tokens in our NN. 


We need an NN that can process any length input.

Humans don’t start their thinking from scratch every second. 
As you read this slide, you understand each word based on 
your understanding of previous words. Your thoughts have 

persistence.

The solution is in RNNs!





Definition

A Recurrent Neural Network (RNN) is a type of NN which 
uses sequential data and for every state (t) it has two inputs: 

the previous state’s output (yt-1) and the regular input (xt).



The drawback of vanilla RNNs

“the clouds are in the sky.”

“I grew up in France… I speak fluent French.”



The drawback of standart RNNs

Unfortunately, as the gap between the relevant information and the 
point where it is needed grows, RNNs become unable to learn to 

connect the information.

In theory, RNNs are absolutely capable of handling such “long-

term dependencies.”

Sadly, in practice, RNNs don’t seem to be able to learn them.


Vanishing gradients problem.

Thankfully, LSTMs don’t have this problem!



Long Short-Term Memory Networks (LSTM)

LSTMs are capable of learning long-term dependencies.

LSTMs are explicitly designed to avoid the long-term 

dependency problem. Remembering information for long 
periods of time is practically their default behavior, not 

something they struggle to learn!

by Hochreiter & Schmidhuber (1997)

http://www.bioinf.jku.at/publications/older/2604.pdf


LSTM Architecture

In standard RNNs, the repeating module will have a very simple 
structure, such as a single tanh layer.


LSTMs also have this chain like structure, but the repeating module 
has a different structure. It has four layers, interacting in a very 

special way.



The main idea behind LSTMs

The key to LSTMs is the cell state, 
the horizontal line running through 

the top of the diagram. It’s very easy 
for information to just flow along it 

unchanged.

The LSTM does have the ability to 

remove or add information to the cell 
state, carefully regulated by 

structures called gates.



The main idea behind LSTMs contd.

Gates are a way to optionally let information 
through. They are composed out of a sigmoid 
neural net layer and a pointwise multiplication 

operation.

The sigmoid layer outputs numbers between 
zero and one, describing how much of each 
component should be let through. A value of 

zero means “let nothing through,” while a 
value of one means “let everything through!”.

An LSTM has three of these gates, to protect 

and control the cell state.



Some notations before we continue

ht - hidden state at time t 

Ct - Cell state at time t



LSTM - Forget Gate

The first step in our LSTM is to 
decide what information we’re going 

to throw away from the cell state. 
This decision is made by a sigmoid 
layer called the “forget gate layer.”



LSTM - Input Gate

The next step is to decide what new 
information we’re going to store in the 

cell state.

This has two parts. First, a sigmoid layer 

called the “input gate layer” decides 
which values we’ll update. Next, a tanh 
layer creates a vector of new candidate 
values, C̃ t , that could be added to the 

state.

In the next step, we’ll combine these two 

to create an update to the state.



LSTM - Update Mechanism

It’s now time to update the old cell 
state, Ct−1 , into the new cell state Ct. 
The previous steps already decided 

what to do, we just need to actually do 
it.


We multiply the old state by ft , 
forgetting the things we decided to 

forget earlier. Then we add it∗C̃ t. This 
is the new candidate values, scaled by 
how much we decided to update each 

state value.



LSTM - Output Gate

Finally, we need to decide what we’re 
going to output. This output will be 

based on our cell state, but will be a 
filtered version.


First, we run a sigmoid layer which 
decides what parts of the cell state we’re 

going to output. Then, we put the cell 
state through tanh  (to push the values to 
be between −1  and 1 ) and multiply it by 

the output of the sigmoid gate, so that 
we only output the parts we decided to.



Gated Recurrent Unit (GRU)

A slightly modified variant of LSTM.

It combines the forget and input 

gates into a single “update gate.” It 
also merges the cell state and hidden 

state, and makes some other 
changes. The resulting model is 

simpler than standard LSTM models, 
and has been growing increasingly 

popular.

by Cho, et al. (2014)

https://arxiv.org/pdf/1406.1078v3.pdf


LSTM vs GRU

Now we have seen the operation of both the layers to combat 
the problem of vanishing gradient. So you might wonder 

which one to use?

According to empirical evaluation, there is not a clear winner.


GRU uses less training parameter and therefore uses less 
memory and executes faster than LSTM whereas LSTM is 

more accurate on a larger dataset. One can choose LSTM if 
you are dealing with large sequences and accuracy is 
concerned, GRU is used when you have less memory 

consumption and want faster results.



Thank You


