
Transformers

Motivation, Architecture

AUA, DS330 Deep Learning 2021, Hovhannes Tamoyan



Motivation

RNNs are great, but the recursive nature of RNN family not only 
makes models very slow but also excludes the opportunity of 

parallelisation: the processes need to be sequential.


Transformers are based on self-attention mechanism.

It is also possible to parallelize the computations of Transformer.


The Transformer was proposed from Vaswani et. al. in 2007, in the paper - “Attention is All 
You Need”.


HarvardNLP implementation in PyTorch - “The Annotated Transformer”

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
http://nlp.seas.harvard.edu/2018/04/03/attention.html


A High-Level Look

Let’s take a look at this Machine Translation example.



Main Components

Under the hood, we see an encoding component, a decoding component, and 
connections between them.



Architecture
The encoding component is a stack of encoders, there’s nothing magical about the 
number six, one can definitely experiment with other arrangements. 

The decoding component is a stack of decoders of the same number.



Architecture

The encoders are all identical in 
structure (yet they do not share 
weights). Each one is broken down 
into two sublayers.



Architecture

The encoder inputs first flow through a self-
attention layer – a layer that helps the encoder 
look at other words in the input sentence as it 
encodes a specific word.


The outputs of the self-attention layer are fed 
to a feed-forward neural network (FFN). The 
exact same FFN is independently applied to 
each position.


The decoder has both those layers, but 
between them is an attention layer that helps 
the decoder focus on relevant parts of the 
input sentence.



Input

Now that we’ve seen the major components of the model, let’s start to look at the various vectors/
tensors and how they flow between these components to turn the input of a trained model into an 
output.

As is the case in NLP applications in general, we begin by turning each input word into a vector 
using an embedding algorithm.

The embedding only happens in the bottom-most encoder. The abstraction that is common to all 
the encoders is that they receive a list of vectors each of the size E – In the bottom encoder that 
would be the word embeddings, but in other encoders, it would be the output of the encoder 
that’s directly below. The size of this list is hyperparameter we can set – basically it would be the 
length of the longest sentence in our training dataset.



Encoder

Here we begin to see one key 
property of the Transformer, which is 
that the word in each position flows 
through its own path in the encoder. 


There are dependencies between 
these paths in the self-attention 
layer. The FF layer does not have 
those dependencies, however, and 
thus the various paths can be 
executed in parallel while flowing 
through the FF layer.



Encoder

From now on we will take a look at a 
shorter example of a sentence to see 
what happens in each sub-layer of the 
encoder.



Self-Attention 

Say the following sentence is an input sentence we want to translate:

”The animal didn't cross the street because it was too tired” 

What does “it” in this sentence refer to? Is it referring to the street or 
to the animal? It’s a simple question to a human, but not as simple to 
an algorithm.

When the model is processing the word “it”, self-attention allows it 
to associate “it” with “animal”.

As the model processes each word (each position in the input 
sequence), self-attention allows it to look at other positions in the 
input sequence for clues that can help lead to a better encoding for 
this word.

Think of how maintaining a hidden state allows an RNN to 
incorporate its representation of previous words/vectors it has 
processed with the current one it’s processing. Self-attention is the 
method the Transformer uses to bake the “understanding” of other 
relevant words into the one we’re currently processing.



Self-Attention 

Let’s first look at how to calculate self-attention using 
vectors, then proceed to look at how it’s actually 
implemented – using matrices.

The first step in calculating self-attention is to create 
three vectors from each of the encoder input vectors 
(in this case, the embedding of each word). So for 
each word, we create a Query vector, a Key vector, 
and a Value vector. These vectors are created by 
multiplying the embedding by three matrices that we 
trained during the training process.

Notice that these new vectors are smaller in dimension 
than the embedding vector. They don’t HAVE to be 
smaller, this is an architecture choice to make the 
computation of multiheaded-attention (mostly) 
constant.



Self-Attention 

The second step in calculating self-attention is to 
calculate a score. Say we’re calculating the self-
attention for the first word in this example, 
“Thinking”. We need to score each word of the 
input sentence against this word. The score 
determines how much focus to place on other 
parts of the input sentence as we encode a word 
at a certain position.

The score is calculated by taking the dot product 
of the query vector with the key vector of the 
respective word we’re scoring. So if we’re 
processing the self-attention for the word in 
position #1, the first score would be the dot 
product of q1 and k1. The second score would be 
the dot product of q1 and k1.



Self-Attention 

The third and fourth steps are to divide the scores 
by 8 (the square root of the dimension of the key 
vectors used in the paper – 64. This leads to 
having more stable gradients. There could be other 
possible values here, but this is the default), then 
pass the result through a softmax operation. 
Softmax normalizes the scores so they’re all 
positive and add up to 1.


This softmax score determines how much each 
word will be expressed at this position. Clearly the 
word at this position will have the highest softmax 
score, but sometimes it’s useful to attend to 
another word that is relevant to the current word.



Self-Attention 

The fifth step is to multiply each value vector by the 
softmax score (in preparation to sum them up). The 
intuition here is to keep intact the values of the word(s) 
we want to focus on, and drown-out irrelevant words 
(by multiplying them by tiny numbers like 0.001, for 
example).


The sixth step is to sum up the weighted value 
vectors. This produces the output of the self-attention 
layer at this position (for the first word).


The resulting vector is one we can send along to the 
FFN. In the actual implementation, however, this 
calculation is done in matrix form for faster 
processing. So let’s look at that now that we’ve seen 
the intuition of the calculation on the word level.



Matrix Calculation of Self-Attention

The first step is to calculate the Query, Key, 
and Value matrices. We do that by packing 
our embeddings into a matrix X, and 
multiplying it by the weight matrices we’ve 
trained (WQ, WK, WV).



Matrix Calculation of Self-Attention

Finally, since we’re dealing with matrices, we 
can condense steps two through six in one 
formula to calculate the outputs of the self-
attention layer.



Multi-Head Attention

This improves the performance of the attention 
layer in two ways:

● It expands the model’s ability to focus on 

different positions. Yes, in the image, z1 
contained a little bit of every other encoding, 
but it could be dominated by the the actual 
word itself.


● It gives the attention layer multiple 
“representation subspaces”. As we’ll see 
next, with multi-headed attention we have not 
only one, but multiple sets of Query/Key/
Value weight matrices (the Transformer uses 
eight attention heads, so we end up with 
eight sets for each encoder/decoder). Each of 
these sets is randomly initialized.



Multi-Head Attention

If we do the same self-attention calculation 
we outlined before, just eight different times 
with different weight matrices, we end up 
with eight different Z matrices, this leaves us 
with a bit of a challenge. The FFN is not 
expecting eight matrices – it’s expecting a 
single matrix (a vector for each word). So we 
need a way to condense these eight down 
into a single matrix.


How do we do that? We concat the matrices 
then multiply them by an additional weights 
matrix WO.



Multi-Head Attention

Let’s try to put them 
all in one visual so we 
can look at them in 
one place.



Positional Encoding

One thing that’s missing from the model as we 
have described it so far is a way to account for the 
order of the words in the input sequence.


To address this, the Transformer adds a vector to 
each input embedding. These vectors follow a 
specific pattern that the model learns, which helps 
it determine the position of each word, or the 
distance between different words in the sequence. 
The intuition here is that adding these values to the 
embeddings provides meaningful distances 
between the embedding vectors once they’re 
projected into Q/K/V vectors and during dot-
product attention.



The Residuals

One detail in the architecture of the encoder, 
is that each sublayer (self-attention, FFNN) 
in each encoder has a residual connection 
around it, and is followed by a layer-
normalization step/operation (no learning).



Layer Normalization Operation

If we’re to visualize the vectors and the layer-
norm operation associated with self 
attention, it would look like this:



The Architecture

This goes for the 
sublayers of the 
decoder as well. If 
we’re to think of a 
Transformer of 2 
stacked encoders 
and decoders, it 
would look 
something like this.



Decoder

Now that we’ve covered most of the 
concepts on the encoder side, we basically 
know how the components of decoders 
work as well.


The encoder starts by processing the input 
sequence. The output of the top encoder is 
then transformed into a set of attention 
vectors K and V. These are to be used by 
each decoder in its “encoder-decoder 
attention” layer which helps the decoder 
focus on appropriate places in the input 
sequence.



Decoder

The following steps repeat the process until a special symbol is 
reached indicating the transformer decoder has completed its output. 
The output of each step is fed to the bottom decoder in the next time 
step, and the decoders bubble up their decoding results just like the 
encoders did. And just like we did with the encoder inputs, we embed 
and add positional encoding to those decoder inputs to indicate the 
position of each word.

The self-attention layers in the decoder operate in a slightly different 
way than the one in the encoder:

In the decoder, the self-attention layer is only allowed to attend to 
earlier positions in the output sequence. This is done by masking 
future positions (setting them to -inf) before the softmax step in the 
self-attention calculation.

The “Encoder-Decoder Attention” layer works just like multiheaded 
self-attention, except it creates its Queries matrix from the layer 
below it, and takes the Keys and Values matrix from the output of the 
encoder stack.



The Final Linear and Softmax Layer

The decoder stack outputs a vector of floats. How do 
we turn that into a word? That’s the job of the final 
Linear layer which is followed by a Softmax Layer.

The Linear layer is a simple FFNN that projects the 
vector produced by the stack of decoders, into a 
much, much larger vector called a logits vector.

Each cell in the logits vector corresponding to the 
score of a unique word. That is how we interpret the 
output of the model followed by the Linear layer.

The softmax layer then turns those scores into 
probabilities (all positive, all add up to 1.0). The cell 
with the highest probability is chosen, and the word 
associated with it is produced as the output for this 
time step.



Conclusion

Significantly improves NN models’ performance:

It’s very useful to allow decoder to focus on certain parts of the source sentence.


Solved the bottleneck problem:


	 Attention allows decoder to look directly to source; bypass bottleneck


Helps with vanishing gradients problem:


	 Provides shortcut to farway states - ski-connections


Provides some interpretability:


	 By inspecting Attention distribution, we can see what decoder was focused 
on


We get (soft) alignment for free - this is cool because we never explicitly trained an 
alignment system. The network just learned alignment by itself.



Thank You


